Task-Adaptive Few-shot Node Classification

Song Wang University of Virginia sw3wv@virginia.edu Kaize Ding Arizona State University kding9@asu.edu Chuxu Zhang
Brandeis University
chuxuzhang@brandeis.edu

Jundong Li University of Virginia jundong@virginia.edu Chen Chen
University of Virginia
zrh6du@virginia.edu

2022. 10. 22 • ChongQing

— KDD 2022

https://github.com/SongW-SW/TENT

Reported by JiaWei Cheng

Introduction

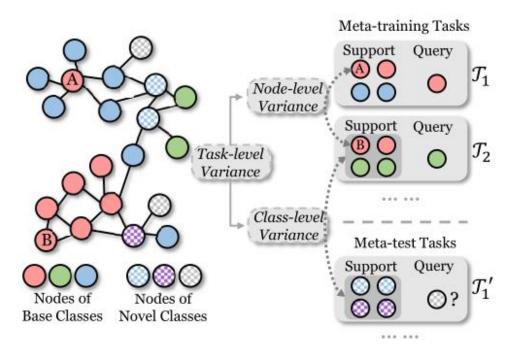


Figure 1: Issues of task variance of existing few-shot node classification frameworks.

Node-level variance represents the differences of node features and local structures of nodes across different metatasks.

Class-level variance denotes the difference in class distributions among meta-tasks.

Overview

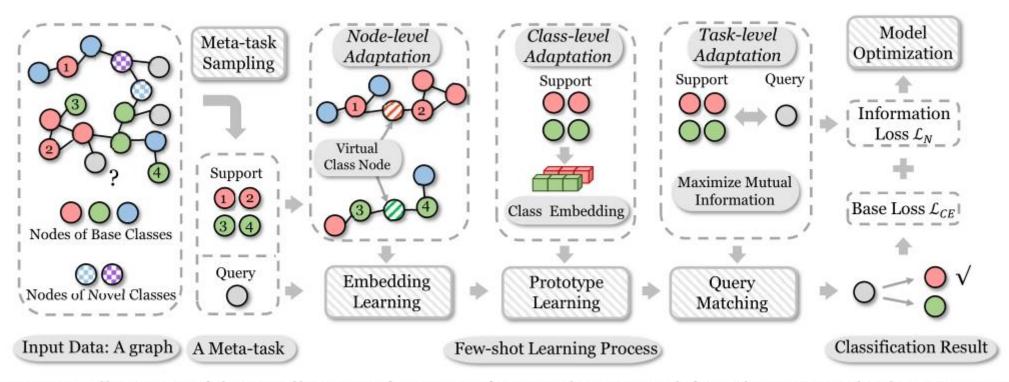
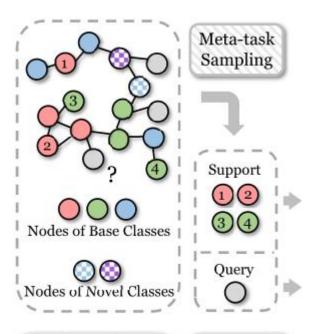
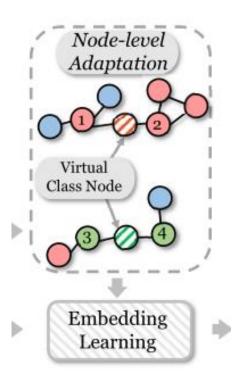



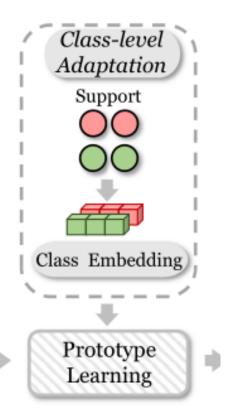
Figure 2: An illustration of the overall process of TENT. We first sample a meta-task from the given graph. Then we construct subgraphs for node-level adaptions and utilize node embeddings in each class for class-level adaptations. We further maximize the mutual information between the support set and the query set during query matching for task-level adaptations.


Input Data: A graph A Meta-task

$$S_t = \{(v_1, y_1), (v_2, y_2), \dots, (v_{N \times K}, y_{N \times K})\},$$

$$Q_t = \{(q_1, y_1'), (q_2, y_2'), \dots, (q_Q, y_Q')\},$$

$$\mathcal{T}_t = \{S_t, Q_t\},$$
(1)


Node-level Adaptation

$$\mathbf{H} = \text{GNN}_{\phi}(\mathcal{V}, \mathcal{E}, \mathbf{X}), \tag{2}$$

$$\mathbf{h}_{c_i} = \text{MEAN}(\mathbf{h}_v | v \in \mathcal{S}_i),$$
 (3)

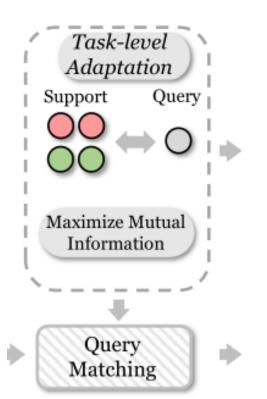
Class-level Adaptation

$$\alpha_i = \text{MLP}_{\alpha} \left(\text{MEAN} \left(\{ \mathbf{h}_v | v \in \mathcal{S}_i \} \right) \right),$$
 (4)

$$\beta_i = \text{MLP}_{\beta} \left(\text{MEAN} \left(\left\{ \mathbf{h}_v \middle| v \in \mathcal{S}_i \right\} \right) \right),$$
 (5)

$$\theta_i = (\alpha_i + 1) \circ \theta + \beta_i, \tag{6}$$

$$\mathbf{s}_{i} = \text{Centroid}\left(\text{GNN}_{\theta_{i}}(\mathcal{V}_{i}, \mathcal{E}_{i}, \mathbf{X}_{i})\right),$$
 (7)


$$\alpha_q = \text{MLP}_{\alpha} \left(\text{MEAN} \left(\{ \mathbf{h}_v | v \in \mathcal{S} \} \right) \right),$$
 (8)

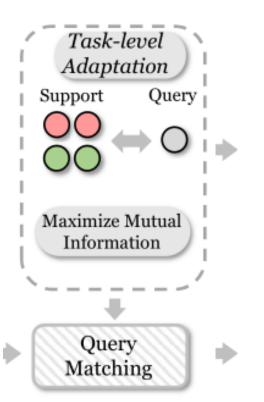
$$\beta_q = \text{MLP}_{\beta} \left(\text{MEAN} \left(\{ \mathbf{h}_v | v \in \mathcal{S} \} \right) \right), \tag{9}$$

$$\theta_q = (\alpha_q + 1) \circ \theta + \beta_q, \tag{10}$$

$$\mathbf{q}_{i} = \operatorname{Centroid}\left(\operatorname{GNN}_{\theta_{q}}(\mathcal{V}_{i}^{q}, \mathcal{E}_{i}^{q}, \mathbf{X}_{i}^{q})\right),$$
 (11)

Task-level Adaptation

$$\max_{\widetilde{\theta}} I(\mathbf{Q}; \mathbf{S}) = \max_{\widetilde{\theta}} \sum_{i=1}^{Q} \sum_{j=1}^{N} p(q_i, s_j; \widetilde{\theta}) \log \frac{p(q_i | s_j; \widetilde{\theta})}{p(q_i; \widetilde{\theta})}, \quad (12)$$

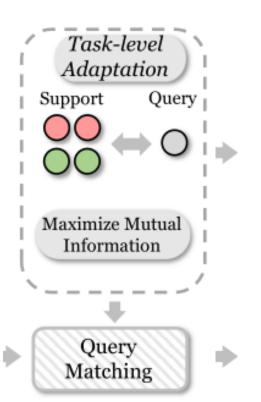

$$I(\mathbf{Q}; \mathbf{S}) = \sum_{i=1}^{Q} \sum_{j=1}^{N} p(q_i | s_j; \widetilde{\theta}) p(s_j; \widetilde{\theta}) \log \frac{p(q_i | s_j; \widetilde{\theta})}{p(q_i; \widetilde{\theta})}.$$
 (13)

$$I(\mathbf{Q}; \mathbf{S}) = \frac{1}{N} \sum_{i=1}^{Q} \sum_{j=1}^{N} p(q_i | s_j; \widetilde{\theta}) \log \frac{p(s_j | q_i; \widetilde{\theta})}{p(s_j; \widetilde{\theta})}$$

$$= \frac{1}{N} \sum_{i=1}^{Q} \sum_{j=1}^{N} p(q_i | s_j; \widetilde{\theta}) \left(\log(p(s_j | q_i; \widetilde{\theta})) - \log\left(\frac{1}{N}\right) \right).$$
(14)

$$I(\mathbf{Q}; \mathbf{S}) = \frac{1}{N} \sum_{i=1}^{Q} \sum_{j=1}^{N} \mathbb{1}(q_i \in s_j) \left(\log(p(s_j | q_i; \widetilde{\theta})) - \log\left(\frac{1}{N}\right) \right).$$
(15)

Task-level Adaptation

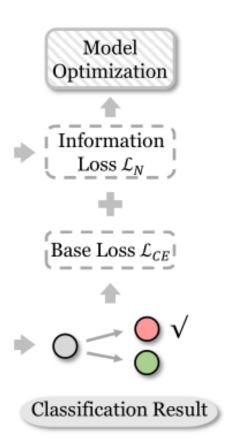


$$\sum_{i=1}^{Q} \sum_{j=1}^{N} \mathbb{1}(q_i \in s_j) \log(p(s_j|q_i; \widetilde{\theta})) = \sum_{i=1}^{Q} \log(p(s_i'|q_i; \widetilde{\theta})), \quad (16)$$

$$I(\mathbf{Q}; \mathbf{S}) = \sum_{i=1}^{Q} \log(p(s_i'|q_i; \widetilde{\theta})). \tag{17}$$

$$p(s_i'|q_i; \widetilde{\theta}) = \frac{\exp\left(-(\mathbf{q}_i - \mathbf{s}_i')^2 / \tau_i'\right)}{\sum_{j=1}^N \exp\left(-(\mathbf{q}_i - \mathbf{s}_j)^2 / \tau_j\right)},$$
 (18)

Task-level Adaptation



$$\max_{\widetilde{\theta}} I(Q; S) = \min_{\widetilde{\theta}} \sum_{i=1}^{Q} -\log \frac{\exp(\mathbf{q}_i \cdot \mathbf{s}_i' / \tau_i')}{\sum_{j=1}^{N} \exp(\mathbf{q}_i \cdot \mathbf{s}_j / \tau_j)}.$$
(19)

$$\tau_i = \frac{N \sum_{k}^{K} \|\mathbf{s}_i^k - \mathbf{s}_i\|_2}{\sum_{j}^{N} \sum_{k}^{K} \|\mathbf{s}_j^k - \mathbf{s}_j\|_2},$$
 (20)

$$\mathcal{L}_{N} = -\sum_{i=1}^{Q} \log \frac{\exp(\mathbf{q}_{i} \cdot \mathbf{s}_{i}'/\tau_{i}')}{\sum_{j=1}^{N} \exp(\mathbf{q}_{i} \cdot \mathbf{s}_{j}/\tau_{j})}.$$
 (21)

Few-shot Node Classification

$$\mathbf{p}_i = \text{Softmax} \left(\text{MLP}(\mathbf{h}_i) \right),$$
 (22)

$$\mathcal{L}_{CE} = -\sum_{i=1}^{Q} \sum_{j=1}^{|C_b|} y_{i,j} \log p_{i,j}, \tag{23}$$

$$\mathcal{L} = \mathcal{L}_N + \gamma \mathcal{L}_{CE}, \tag{24}$$

Table 1: Statistics of four node classification datasets.

Dataset	# Nodes	# Edges	# Features	Class Split
Amazon-E	42,318	43,556	8,669	90/37/40
DBLP	40,672	288,270	7,202	80/27/30
Cora-full	19,793	65,311	8,710	25/20/25
OGBN-arxiv	169,343	1,166,243	128	15/5/20

Table 2: The overall few-shot node classification results (accuracy in %) of various models under different few-shot settings.

Dataset	DBLP				Amazon-E			
Setting	5-way 3-shot	5-way 5-shot	10-way 3-shot	10-way 5-shot	5-way 3-shot	5-way 5-shot	10-way 3-shot	10-way 5-shot
PN [28]	41.51 ± 3.60	46.17 ± 3.55	28.98 ± 3.87	36.71 ± 3.35	56.80 ± 3.60	62.53 ± 2.80	44.26 ± 2.64	48.20 ± 3.89
MAML [7]	43.06 ± 2.92	49.93 ± 2.57	34.63 ± 3.91	38.44 ± 3.25	56.03 ± 2.11	63.40 ± 3.33	40.80 ± 2.75	47.06 ± 3.15
GCN [15]	62.87 ± 1.44	70.51 ± 1.37	47.22 ± 2.97	53.95 ± 2.49	55.33 ± 1.23	62.96 ± 2.61	45.18 ± 2.61	50.89 ± 2.95
G-Meta [12]	73.49 ± 2.82	78.56 ± 2.86	60.77 ± 3.03	66.26 ± 3.47	64.56 ± 4.23	68.36 ± 4.10	59.75 ± 4.90	63.02 ± 4.11
GPN [6]	76.42 ± 3.11	80.85 ± 3.68	63.14 ± 2.25	69.55 ± 2.56	65.16 ± 3.17	71.89 ± 3.94	62.52 ± 3.12	63.98 ± 2.04
RALE [18]	75.38 ± 4.94	79.85 ± 4.69	62.81 ± 3.48	67.61 ± 3.99	69.55 ± 4.24	74.97 ± 4.66	63.27 ± 3.31	64.85 ± 3.04
TENT	79.04 ± 3.14	82.84 ± 3.97	65.47 ± 4.21	72.38 ± 4.14	75.76 ± 3.63	79.38 ± 4.98	67.59 ± 4.16	69.77 ± 3.76

Dataset	Cora-full			OGBN-arxiv				
Setting	5-way 3-shot	5-way 5-shot	10-way 3-shot	10-way 5-shot	5-way 3-shot	5-way 5-shot	10-way 3-shot	10-way 5-shot
PN [28]	42.62 ± 3.78	56.66 ± 2.91	35.95 ± 3.95	38.69 ± 3.09	37.99 ± 3.98	49.71 ± 4.20	31.44 ± 3.00	35.79 ± 3.63
MAML [7]	47.10 ± 4.32	54.89 ± 3.09	30.68 ± 3.08	42.22 ± 2.76	41.83 ± 2.54	42.14 ± 3.86	33.15 ± 2.92	36.82 ± 3.03
GCN [15]	49.05 ± 2.04	58.03 ± 3.50	34.27 ± 3.98	39.85 ± 3.50	44.80 ± 2.56	47.29 ± 3.58	35.80 ± 2.21	37.78 ± 2.90
G-Meta [12]	57.93 ± 3.79	60.30 ± 2.93	45.67 ± 3.35	47.76 ± 3.25	47.66 ± 3.27	49.81 ± 4.01	35.93 ± 3.04	40.13 ± 4.35
GPN [6]	58.38 ± 3.49	63.82 ± 2.93	41.65 ± 2.20	45.63 ± 3.17	49.16 ± 3.43	53.06 ± 3.13	37.28 ± 3.99	43.33 ± 3.27
RALE [18]	62.83 ± 3.12	65.93 ± 3.24	48.05 ± 3.09	51.67 ± 3.21	53.90 ± 3.45	56.99 ± 4.43	37.60 ± 4.12	41.42 ± 3.03
TENT	64.80 ± 4.10	69.24 ± 4.49	$\textbf{51.73} \pm \textbf{4.34}$	56.00 ± 3.53	55.62 ± 3.13	62.96 ± 3.74	41.13 ± 4.26	44.73 ± 3.42

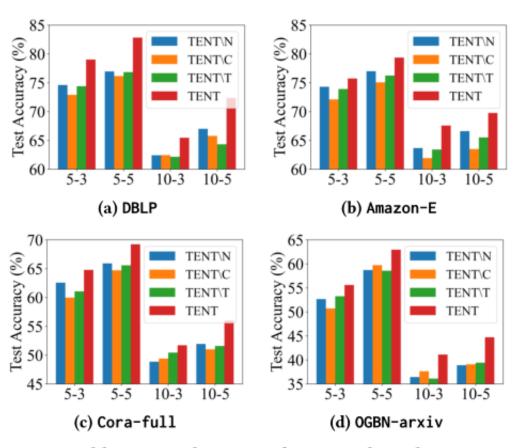


Figure 3: Ablation study on our framework in the *N*-way *K*-shot setting.

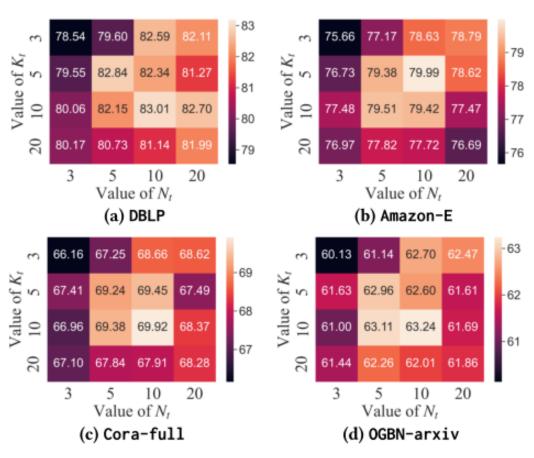


Figure 4: Results of TENT with different N_t and K_t .

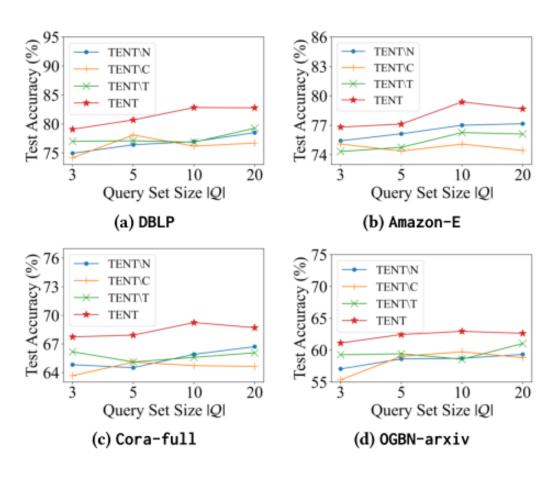


Figure 5: Results of TENT with different values of |Q|.

Thanks!